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Formulations are presented of a number of optimization problems of the the-
ory of longitudinal vibrations of rectilinear rods of constant cross section,
Results of their solution, obtained by using the necessary condition of station-
arity of the functional constructed in [1] and the necessary Weierstrass con-
dition of a strong minimum of the functional established below, are described,
Special attention is paid to optimization problems in which there are discon-
tinuities in the Lagrange multipliers on the characteristic lines on equations
of hyperbolic type by which longitudinal vibrations are described,

1, Formulation of the problem, Let us consider the following second order
partial differential equation defined in the domain QL z<T, 0Ky .

Zyx — w“zUV = U (.‘L‘, y) ('1.1)

If it describes the longitudinal vibrations of a rod, then z = 2 (z, y) is the longitud-
inal displacement of a rod section, and U, (Z, y) is the longitudinal load intensity dis-
tributed along the rod length, Let us consider the lcad constrained by the inequality
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oy (2, 9) IS F (1.2)

Let be given the initial boundary conditions
2(0,9) =2:(0,9 =0 (1.3)
2(x,0) =0, z(z,) =0 (1.4)

We formulate the following optimization problem, To find among the continuous func-
tions z(z, y) and among the piecewise-continuous disturbing forces u, (z, y) which
satisfy (1.1) and the inequality (1, 2) in the domain {Q and conditions (1, 3) and (1.4)
on the boundaries of this domain, those which will render the functional a minimum

i
1=S0G(T, 9, 2.(T. y) dy (1.5)

Various selections of the integrand ¢ in the integral (1, 5) result in diverse problems ,
Thus, for ¢ = 2z, (T, ) we obtain the problem of the minimum of the mean value of
the velocity of a section relative to the length of the rod at a finite time z = 7', and
for ¢ = —z (T, y) we have the problem of cumulative disturbances for the longitud-
inal vibrations of a rod, Other examples of functionals will be presented below,

A singularity of the problems described, which is related to the presence of the ine-
quality (1, 2), can be bypassed if an auxiliary real variable U; = u, (z, ¥) is intros
duced and the auxiliary dependence

V=P (U, Uy) = U +ul —F =0 (1.6)

is constructed, Then the formulated problem can be considered a particular case of the
following optimization problem for systems described by second order equations of

hyperbolic type.,
To find among the continuous functions z (x, y) and the piecewise~continuous equa-

tions u, (x, ¥),..., Um (%, ¥) satisfying the differential equation and relationships
L (2) = ay2.x + antyy + 0,2, + a2y = [ (2, y, 2, W) (1.7)
Yoz, w)=0k=1, ..., r<m) (1.8)
in the domain Q (a << 2 <C{b, ¢ << ¥ « d), and the conditions
z(a, y) = @ (¥): 2z (¢, ) = 02 (¥) (1.9)
Qc (2, 2,2,) =0 for y=¢ (1.10)

Qs {z,2,2y) =0 for y=4d

on the boundary of the domain  , those which render the functional a minimum

d
I= Lj fo(z, ¥, z, uydzdy + jq;b . z, 2,) dy + % (z° (b, ¥)) (1.11)

Here u = (u,, ..., U,,) is understood to be an m-dimensional control vector, the co-
efficients @, (2, ), @z (2, y), ay (¢, y), @y (z, y) and the functions £y, f, Pa, P1s
P2+ Pe, Pa» T are considered continuous and to have continuous partial derivatives with
respect to their arguments to the third order inclusive, z° (b, y) denotes the p-dimen-
sional vector z° (b, ¥) = (2 (b, ¥,°), ...,z (b, ¥p°), where ¥»° are given numbers
and y,° = ¢, yp°= d, the function @, is piecewise-continuous where it has continuous
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partial derivatives with respect to its arguments to third order inclusive on each conti-
nuity section,

Such a problem has been studied in [1], where the necessary condition for the station-
arity of the functional I was established, The additional Weierstrass condition of a strong
minimum of the functional, obtained helow, will be used in solving the optimal problems,

2, Necessary Weierstrass condition of a strong minimum of the
functional, The functions z = z (z, y) define a surface in z, y, z space, Let us
consider the normal surface £ rendering the functional / a minimum, As in the case
of one independent variable [2], let us consider the normal surface E to be that surface
for which a unique systemn of Lagrange multipliers exists, In the domain £ let us select
an arbitrary segment M, M, of the line z == z° == const and the segment M ,M, of

y the line r = z° + e = const, where e is
dl_ a parameter so that the rectangle M,MzMsM,,
y’__—_—_‘ T o ==, formed by these segments would lie entirely
noTH, Ce in some elementary region ; (Fig, 1), Let us
2, H’I b Uzz draw characteristics C,, C,,, Ca, C2. of(1.7)
} {52 * 19, through the points M,M, M4 and M, .Let
= R Q,, Q,, Q,, Q, and Q; denote the domains
# Jlr”;:”oeiz, ;7 - obtained, For definiteness, let us consider the

characteristic (', to intersect the section of
Fig, 1 the boundary ¥ — ¢ in the domain €2, and
the characteristic C1 the section of the bound-

ary £ = b,
Let us construct three admissible one-parameter families of surfaces
2 (_:r, ¥, up(x, ) (k= 1, ..,m), z,yeE Q + Q34 Q
zZ (‘2:7 y)i Uk (.’L‘, !/) (k = 1,.., m)v T,y = Q«l (21)

Z(.'L', Y, e)‘ Up (xvy) (k_"1v "'7m)’ x7yEQZ le|<€

including E for e = (), The first and third families in (2, 1) satisfy (1, 7) and (1. 8),
and the second is constructed by using the equations

L(Z) = f(x,y, Z, U), $p (z, 4, U) =0 (k=1,...,7) (2.2)
The conditions
2(2°, Y) = Z (@ ), 2. (5 y) = 2. (2 9), Y E M, M)l
Z(@ 4+ ey =2 +ey, 6, ysI(M, M (2.3
Z,(2°+ e y) =2, (2 + ey, €)

are satisfied on the boundaries of the domain, The function z (x, y) and its derivative
with respect to the normal are continuous on the characteristics C;, Cy, C,,, C,, since
z (z, y) is continuous in the whole domain Q and 2y (z, ¥) is continuous pecause
M, M, M, M, lie within the elementary domains @, and the characteristics C,,
C;, C,. and Cy, are not boundaries of the elementary domains,

Variations of the family (2,1) with respect to the parameter ¢ on the surface £ are
defined by the expressions
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=(02/0€)pmg = 0, 2, y € Q, + Q3+ Q4
2,y =2,y 0+ ¢
Zex (2 Y) =222 (2% y, 0) + B2y Yy E M5, M) (2.4)
Cn(z,y) = (0up/0€)emo =0, 2,y

On the basis of (2.3), we have £ = 0 for ¥ & [M4, M. This variation also equals
zero on the characteristics C,, and Cy, so that § = (. After substitution of (2,1) into
the functional I and differentiating with respect to € at ¢ = () we obtain

M,
(%)e:o = S (L (Z, U) = Ly (2, )] dy + S {[aA8 + audkz + (@uM) 81 0y +
M, S,

b
a
(028 -+ ayh, — (o) Bl ds + v, (e 4 508, )ds + 29

"

{ (@'H §) ;y+ _§:‘, %g(b, )

where we used the notation

Ly=fo+ ML) — fI + 2 nw (2.6)
k=1

and the continuity of this function as it passed across the characteristics C, and C, is
used in the calculation of (2,5). The relations .~ = ®.* s~ = @p* and the Eu-
ler equation are also taken into account, and §, denotes the boundary of the domain
Q,.

Let us go from the variables z, y in (2, 5) to the new variables N and s, described
in detail in [1], where the formulas and notation used below are also presented, After
this passage, we have

M, i
(%)e=o ; ;S [Ls(Z. U) — La (2, W)} 2y + f‘* {AAEy — A8 +

[allnl-l—ag?\nz (A M)y — (Agh), — (Al—A)— x] }d>+ (2.7)

{ o, (fen 22 )dx+§(w”’+g&x)dy+2‘”*<b )

X1

The contour S consists of the segment MM, of the two characteristics C, and C,
and segments of the outer boundaries [¢, ¥»| and [z,, b]. We have A, := 0, § = 0
on the characteristics, Hence, §, = 0 also, On the outer boundary A, == 0. Also 4.
and ¢ equal zero on the segment M, M, ,hence &, is also zero, Taking the above into
account, we obtain the following expression in place of (2,7)

aJ M, _\1,
(%) o= V1202 0) = Lotz wpiay — { Artay +

M, M,

b
S{["LZ —(a; — Ap) L + A1), ]§+ (All—nc%)'éy}dx—'{-

X3
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Vs
0P,
W3+ @—ar—an] e+ (4a+ 2)e oy + 2‘, 6, 4)
¢ (2.8)
The integrands in the third and fourth integrals in the right side of (2, 8) are zero on the
basis of the boundary conditions, If still another condition at the points ¥ = yy° is
taken into account, then (2, 8) can be given the following simple form:

(%)M = 1§ [Ly (2, U) — Ly (z, u) — Al dy 2.9)
M

If the variation of & x from the third equality in (2, 51) is substituted into this expression,

and it is taken into account that the function z (z, y) is continuous together with its

derivatives 2., Z, and 2z, along the line MM, then the derivative (2, 9) can be re-

written as M,
dl

(Te->e=0 = S [H(z,y, 2, U, 0, \)—H(z,y,z,u,p,A)] dy (2.10)

My

H=fo—Af + Zl‘k‘l’k
k=1

The surface E renders the functional I a minimum, Hence
(A | de)ey >0 (2.11)

The arbitrary segment M, M, could be of any length, Therefore, to comply with the
inequality (2.11) it is necessary to satisfy the following inequality in each elementary

domain O Uy i ) — H (2, 9, 2, Uy, B > 0 (2.12)
Therefore, in order for the surface £ to render the functional I a strong minimum,

it is necessary to satisfy the stationarity condition and the Weierstrass inequality (2,12)

at any of its points, where U is the set of any admissible controls, and u is a set of con-

trols rendering the functional I a minimum, where U= u.

3, Construction of optimal loadings for continuous Lagraage
multipliers, Let us consider some examples of applying the necessary Weierstrass
condition described above, starting with problems in which there are no discontinuities
in the Lagrange multipliers A (z, y).

As the first illustration, let us construct the loading u, (z, y) constrained by the in-
equality (1, 2) for a rod, described by (1 1),(1,3) and (1. 4) and rendering the functional
a maximum

I= —T—Sz(T, y)sm—l-dy (3.1)
0
In solving the problem, we introduce the relationship (1. 6) in place of the inequality
(1.2), and use the equations and conditions described in [1]. We then have the follow-
ing equations for the factors A and p :

Apx — WAyy = 0, —A — 2pu, =0, —2pu, =0 (3.2)

with the initial and boundary conditions
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AT,y =0, A, (T, y) = 2nw /! sin2ny /1
A,y =A(z, ) =0
Hence the multiplier A is [3]

A(z,y) = —sin 2wl — ) (f =2 sin2—’;y—

and therefore u, = +=F everywhere, except on lines on which A = 0, These lines
are defined by the equalities

l
y*=:?:i21- k=1.2..) 2*=THz (@=12.) (3.3)
where the sign of the control u, (z, y) is found by using the inequality
[’ Aul _ KUI < 0 (3'4)
l obtained from the Weierstrass inequality,
I S Shown in Fig, 2 is a distribution of the
L al ™ optimal load u, (z,y) = 4-F in the domain
2 N //' y*x"*) Q when ]/ 2w< T < l/w. Thc notation
S of 2* =T — /2w and y* = 1/ w is used,
L_ The functional I has the following value:
z* z
_Fp 2nwT \
Fig. 2 I_-Zn—w(3+cos )

Now, let us examine the problem described above by replacing the functional by the
following :

I= —l— z (T.y) (sm— + 2sin my) dy (3.5)
0

Repeating the appropriate computatjons, we obtain an expression for the multiplier

. T — . . -
A(l', y): _SlnMSlng—%Slnwsiﬁélﬁ

The switching lines for the control u, are given by (3, 3) and the relations
{l/2narccosX, y<<l/2
l/2n (2n — arccos X), y>1/2

X= [— 2 cos 22 (Tl— **) 'J -1

y** =

Hence, the domain Q is now subdivided into the eight subdomains shown in Fig, 2, The
sign of %; (z, y) is found by using the inequality (3, 4), Therefore, four subdomains of
constant u, are obtained for the functional (3,1) and there will be eight such subdomains
for the functional (3, 5),

4, Optimal loading laws for discontinuities in the Lagrange
multipliers, Let us consider the optimization problem for (1,1) and (1. 6), condi-
tions (1, 3) and (1,4), and the functional

1=Szx(T, Y) (1+esm —) dy (4.1)

0
The equations for A and W retain their form (3,2), and the boundary and final conditions
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are written as

Aiz,0) =A(x, ) ~ 0
AMT,y) = —1 —esinay/l, L, (T,y) =0
These conditions show that the multiplier A (, ¥) has a discontinuity at the points
I:T,y;::o andx:T,yzl .
We seek the solution of the first equation
l in {3,2) in the form
F T, A=A 4+ A (4.2)

W: and require compliance with the conditions
M(T,y) = —1, A (T,y) = —esinny/l
AT,y =A" (T, =0

We shall keep the boundary conditions as
before and consider that 1/ 2w< T'<< 1} w.

Fig. 3

The solution for A” is
(T —z) . Ry 7
-—‘-‘—l-—“""' Sin T ('{-. 5)

In order to find the discontinuous solution A’ (Z, ¥). let us draw a characteristic y =
] — w(T — z) through the point = T, y = l and a characteristic y = w
{T — x) through the point £ = T,y = ().

The factor )’ is continuous in the elementary domains being formed (see Fig, 3). The
equation defining the discontinuity A" on the characteristics has the simple form
[A]; == 0. Solving it for each of the four segments of the characteristics, we obtain

M = Mo, = =1, (W = M), = — 1

(7\43' — M)e, = Dy, (A — MY, = D,
The condition [1]

N (x, y) = — ecos

}&l’ -_— ;\‘2, "‘f‘ ksl —— }\,; L O
should be satisfied at the point = z¥, y = [j2 , which results in the values D, =

D, = 1. we then have for A’
"""i, L,y o

’ — 0, xvyem-’- A/
M@y =1 o . ycwm (4.4)

f, z., y&E ws

After substituting (4, 3) and (4, 4) into (4, 2), we find that there is just one ling g ==
z* = T — 1,1/ w of discontinuity of the control parameter u, (z, y) for ¢ >0,
In this case, we have on the basis of the Weierstrass inequality

— F,z <z

ux{xvy):{ F,z>z*

In this case the functional ] has the following value:

Fre Jute®? 2FRe [, . nwel ;-
Po b= 5 (14 257 4 G (2 sin ™) (-9

Upon compliance with the inequality —1 < & <C U, there are in addition to the line
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already noted, two lines of discontinuity of the parameter u,(z,y) , the characteristics
C, and C,. All these lines and the distribution of the values or u, (x, y) are shown in
Fig- 3, For this u; (x, y) distribution, the functional 7 has the value

*
lmﬁz )+2“L21;_5 (ﬂ:wT 2+ sn:_z_xgl’_*_ =5 sin anT)
Comparing expressions (4, 5) and (4, 6), we find that Iy = I fore = 0, For ¢ = 0
the continuous part of A”(z,¥) vanishes, and therefore, A (z, y) = 0 in the domains
@© and 4. In the case under consideration there is an innumerable set of solutions yield-
ing the extremum of the functional / for e= ( . Two have been obtained above arti-
ficially,

Now, let us examine a functional of the form

!

I=—al (T, 5)+{z@, 9 dy @7

1—12_—-(1-} (4.6)

while keeping unchanged all the remaining equations and conditions of the problem,

Fig. 4 Fig, 5

We draw two characteristics C; and C, through the point z = T, y = 1 / 2 (Fig, 4),
Then in addition to the boundary conditions A {z, 0) = X (2, I) = 0 conditions of
the form [1]

MTY=0 fr y=[0.4). MTY=0 for y= (5.1

l 1
Ay (T’ “2") T2VIan (T, i2) an (T, t/z)al
klx (T!y) = 1 for ye {Oy lilz)v 7\3:: (T9 y) = 1 for ?/E (llzs l)
must be satisfied, Separating the Lagrange multiplier » (x, Y) in the sum {4.2) into

continuous and discontinuous parts, we obtain that the continuous part can be represented
graphically (Fig, 5), where A" (x*, l/2) = —T - z*. The discontinuous part has the
/2al/w 'xvyeﬁ)z

Sl"lple fOIm
{ 7 x, y gé e {15,

If @ is a small quantity for which the inequality Y,al/w<C ljw — T is satisfied,
then the lines of discontinuity are disposed as is shown in Fig, 6. Hence A (z, y) >0
for z, y € 04, @5, We and A (z, y) << O in the remaining domain, The Weierstrass
inequality yields
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(@ )_{ Fofor 2, yE R — 0« — @5 — w4
VY= F for z,yc 08+ 05+ oo
The functional equals

Fis 1 wr* qulr*? Fla 1 * *
] e | et — —als wxr wx rFpe o
/4w2[3+ ] (1 e > G5z [Z+T(1—T>]+ma‘

If a = 0, we then arrive at the problem of cumulative disturbances and for

ki l
T=a,+—, xkE[O, 7] (k=0,1,..)

14
we obtain - -, 3udz,? rz P )
f= Eu‘z( [
Let us consider the functional
’ tf24e 1
» . u
[=.2T S z. (T, y)dy—{—agzx(T, Y) smTydy (4.8
ljog—e 0

while keeping the equation and condition of the problem unchanged, Then the equations
defining the multipliers A and W are written in the form (3,2) and the conditions of the
boundary of the domain Q have the form

Mz, 0) =A(z, ) =0, A (T, y) =0

—asinny /!, ye[0,i/2 —4¢)
A(ﬁy):{—i/e—asinny/l, veEl/2—¢, 12-+8)
—asinnay/l, ye=(I/2+¢€,1)

Again there are discontinuities in the function A on the boundary, Let us draw two
characteristics through the discontinuous points as is shown in Fig, 7. We seek the mul-
tiplier A (x, y) as the sum (4, 2) of continuous and discontinuous parts, We then obtain

these two parts in the following form :
J =g, r, gy E e, o

, s, T, y& W, 03
A (12. U Yy g7} I
, Y E s,
l 0, in the remaining domain
” 7 T —1«z .Y
AMix,y) - —a cos-—lil——) sin =

An investigation of the sign of the multiplier A (z, y) ~ A" (x, y) + A'(z, y) for
J q4

R,

NE‘ rolew
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@ >0 and the use of the Weierstrass inequality show that the discontinuity in the func-
tion U, (, §) holds only for x = z* in this case, and this function has the form

F, z>z*
uy (x, 9) ={—F, z < x*

In case & < wx* the functional I equals the following:
F
[ = 2fPa (z—sin’“lﬂ)JrFT—F“ (4.9)

nw
Upon compliance with the inequality —!/, e™! << a << O the distribution of the values
of the function u, (z, ¥)is as shown in Fig, 7, The functional I hence has the value
4PPo (0T & 4 1 . ml 14 213) _Fe

I=—-(——————+Esln—l——ﬁsln 7 +FT m (4.'10)
Comparing (4. 9) and (4,10) for a = (), we obtain the following: I = FT — Fe / w.
Let us note that again the problem has an innumerable set of solutions for ¢ = ( , two
of which are described above,
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PRESSURE OF A STAMP ON A HALF-PLANE WITH INCLUSIONS

PMM Vol, 36, N5, 1972, pp.905-912
Tu, A, AMENZADE
(Baku)
(Received June 8, 1971)

The problem of pressing a stamp on a half-plane with holes in which inclu~
sions from another material are inserted with prestress, is considered, The
cases of frictionless contact and for total adhesion of the stamp to the half-
plane are examined, It is shown that when the elastic constants of the half-
plane and inclusions are identical, the auxiliary functions introduced on the
contours are defined completely by the magnitude of the prestress and the
solution of the problem is obtained in closed form, If the elastic constants
are distinct, then the method proposed results in some functional relationships
which can be used to determine the auxiliary functions from the kinematic
contact conditions,

1, Formulation of the problem, Let us consider an elastic half-plane §,
with a finite number of holes, The half-plane is bounded by a line L, and the holes



