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Formulations are presented of a number of optimization problems of the the- 
ory of longitudinal vibrations of rectilinear rods of constant cross section. 
Results of their solution, obtained by using the necessary condition of station- 
arity of the functional constructed in [l] and the necessary Weientrass con- 
dition of a strong minimum of the functional established below, are described. 

Special attention is paid to optimization problems in which there are discon- 
tinuities in the Lagrange multipliers on the characteristic lines on equations 
of hyperbolic type by which longitudinal vibrations are described. 

1. Formulation of the problem. Let us consider the following secondorder 

partial differential equation defined in the domain Q (0 < z < T, 0 < y < I) : 

z xx - W'LZ,, = u1(5, y) (1.1) 

If it describes the longitudinal vibrations of a rod, then z = z (z, I/J is the longitud- 
inal displacement of a rod section, and ur (z, y) is the longitudinal load intensity dis- 
tributed along the rod length. Let us consider the load constrained by the inequality 
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(1.2) 

z (0, Y) = z, (0, Y) = 0 (1.3) 
2 (2, 0) = 0, 2 (2, 2) = 0 (1.4) 

We formulate the following optimization problem. To find among the continuous func- 

tions z (5, y) and among the piecewise-continuous disturbing forces I.+ (r, y) which 

satisfy (1.1) and the inequality (1.2) in the domain Q and conditions (1.2) and (1.4) 
on the boundaries of this domain, those which will render the functional a minimum 

I= SPW Y), G&5 y)) dy (1.5) 
0 

Various selections of the integrand cp in the integral (1.5) result in diverse problems . 
Thus, for cp = z, (T, y) we obtain the problem of the minimum of the mean value of 

the velocity of a section relative to the length of the rod at a finite time 5 = y’, and 

for cp = --z (T, y) we have the problem of cumulative disturbances for the longltud- 

inal vibrations of a rod, Other examples of functionals will be presented below. 
A singularity of the problems described, which is related to the presence of the ine- 

quality (1.2). can be bypassed if an auxiliary real variable U2 = Us (X, y) is intro- 

duced and the auxiliary dependence 

9 = l&7 (U,, U2) = IL; t uz” - F2 = 0 (1.6) 

is constructed. Then the formulated problem can be considered a particular case of the 

following optimization problem for systems described by second order equations of 

hyperbolic type. 
To find among the continuous functions z (5, y) and the piecewise-continuous equa- 

tions u, (5, y) ,..., U, (CC, y) satisfying the differential equation and relationships 

L (4 = %zx, + a22q/, + a,z, + a2zy = f (5, Y, 2, 4 (1.7) 
gk (5, y, u) = 0 (k = 1, . . . . r < m) (1.8) 

in the domain Q (a < x < b, C < y < d) , and the conditions 

2 (a, Y) = VI (Y)l 2% (a, Y) = cp2 (Y) (1.9) 

cpc (59 2, zv) = 0 rbr y = C (1.10) 

(Pd (5, & %I) = 0 for y= d 

on the boundary of the domain 61 , those which render the functional a minimum 

I= JJro(& Y, 29 U)d5& + js,(y. 2, 23 dy + x (z’(b, Y)) (1.11) 
0 C 

Here u = (us, . . . . u,) is understood to be an n-dimensional control vector, the co- 

efficients % (2, Y), aa (G Y), orI (2, Y), UB (5, y) and the functions fo, f, gk, ‘pl, 
cP2t CPCV Q)d, Z are considered continuous and to have continuous partial derivatives with 
respect to their arguments to the third order inclusive, z” (b, y) denotes the p-dimen- 

sional Vector so (6, Y) = (Z (b, Yr’), 
and yIo = 

. . . , e (b, Yp”), where yk” are given numbers 
c, yp”= d, the function q+ is piecewise-continuous where it has continuous 
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partial derivatives with respect to its arguments to third order inclusive on each Lanti- 
nuity section. 

Such a problem has been studied in [I], where the necessary condition for the station- 
arity of the functional 1 was established. The additional Weierstrass condition of a strong 

minimum of the functional, obtained below, will be used in solving the optimal problems. 

2. Nacor#rry Waier8trr81 condltlon of A rtrong minimum of the 
functlonrl, The functions z = z (5, Y) define a surface in x, y, z space. Let us 
consider the normal surface E rendering the functional 1 a minimum. As in the case 

of one independent variable 123, let us consider the normal surface E to be that surface 

for which a unique system of Lagrange multipliers exists. In the domain S1 let us select 
an arbitrary segment M,M~ of the line .z T= 3 = Const and the segment :kf$f, of 

g1 the line x =- 2” f e = ConSt, where e is 

ary .c = b. 
Let us construct three admissible one- 

a parameter so that the rectangle M,M,M,M, 
formed by these segments would lie entirely 
in some elementary region oi (Fig. 1). Let us 

draw characteristics C,, Cler cz, cz,! of(1.7) 

through the points M,Mz M, and M, . Let 
Q,, Q2, Q,, $2, and Q, denote the domains 
obtained. For definiteness, let us consider the 
characteristic c, to intersect the section of 
the boundary Y 7 c in the domain 61, and 

the characteristic C, the section of the bound- 

.parameter families of surfaces 

2 k, Y>, u/t (f, y: (k 2Y 1, . . . . m), x, y E 52, + Q, i- Q, 

2 (5, YL U/I (5, Y) (k -z I,..., 4, 5, Y E 94 (2.1) 

2 (z, Y, 4. uk (x, Y) (k 7 1, . . . . m), 2, y E: % 1 e I < E 

including E for e - 0. The first and third families in (2.1) satisfy (1.7) and (1.8)) 

and the second is constructed by using the equations 

I, (2) 7: f (2, y, 2, 0 $l (5, Y, U) = 0 (k = 1,..., r) (2.2) 

The conditions 

z (50, y) =- z (50, y), z, (9, y) = z, (x0, Y), Y E [Ml, MA 

z (a~ A- e, y) = z (2 + e, y, e), y E [MS, MJ (2.3) 

2, (2 + e, y) = 2, (z” -I- e, y, e) 

are satisfied on the boundaries of the domain. The function z (5, y) and its derivative 
with respect to the normal are continuous on the characteristics c,, C2, Cle, C, since 
Z (5, y) is continuous in the whole domain 52 and ZN (5, Y) is contHIUOus because 
M,, MP, M,, hf4 lie within the elementary domains a4 and the characteristics c,, 

G, C,, and CZ~ are not boundaries of the elementary domains. 
Variations of the family (2.1) with respect to the parameter e on the surface E are 

defined by the expressions 
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E = (82 / a&,, = 0, x, YE Q, + Qs + Qs 
2, (x0, Y> = 2, (x0, Y, 0) + E 

z.Yx (x0, Y) = zx, (x07 Y, 0) + E,, Y E [MS, M,l (2.4) 

t;k (2, Y) = @u&9,=0 = 0, X,YEQ 

On the basis of (2.3), we have E = 0 for y E [Ma, M,]. This variation also equals 

zero on the characteristics C,, and Cle so mat E = 0. After substitution of (2.1) into 

the functional 1 and differentiating with respect to e at e = 0 we obtain 

where we used the notation 

and the continuity of this function as it passed across the characteristics C, and Cz is 

used in the calculation of (2.5). The relations ‘pC- = (PC’, (Pb- = qb+ and the Eu- 

ler equation are also taken into account, and S, denotes the boundary of the domain 

Q2. 
Let us go from the variables z, y in (2.5) to the new variables N and s, described 

in detail in [ 11, where the formulas and notation used below are also presented. After 

this passage, we have 

The contour S2 consists of the segment M,Mz of the two characteristics C, and C, 
and segments of the outer boundaries [c, ~21 and [zzl, b]. We have /i, Z-L 0, j ~7 0 
on the characteristics. Hence, E, = 0 also. On the outer boundary tlq == 0. Also A, 
and ; equal zero on the segment M,Mz , hence E, is also zero. Taking the above into 
account, we obtain the following expression in place of (2.7) 

.%I, 

(S).=, = $ 
AI* 

[La (2, U) - L, (z, u)] dy -- \ A& ?y + 
M, 4, 

b 

GIL - (a, - A,,) h + A&, I ( E + . A,A - 7 3) &,} ds -i- 
c a2 

Xl Y 
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The integrands in the third and fourth integrals in the right side of (2.8) are zero on the 

basis of the boundary conditions. If still another condition at the points y = yYo is 

taken into account, then (2.8) can be given the following simple form : 

(23=0 = 1: [L, (z, u) - Ls (2, u) - A&l @I (2.9) 

If the variation of E, from the third equality in (2.4) is substituted into this expression, 

and it is taken into account that the function z (x, ‘y) is continuous together with its 

derivatives zx, zy and zyy along the line M,Ms, then the derivative (2.9) can be re- 
written as 

(%),=,- 5 [H (XV Y, 2, u, F. A) - H (2, Y, 2, u, P, A)1 dy (2.10) 
.v , 

H = fo - v + z Pk$k 
k=l 

The surface E renders the functional 1 a minimum. Hence 

(dl/ de),-, > 0 (2.11) 

The arbitrary segment M,M2 could be of any length. Therefore, fo comply with the 

inequality (2.11) it is necessary to satisfy the following inequality in each elementary 

domain ol: 
H (z, y, 2, u, /.L, A) - H (5, y, 2, u, II, A) > 0 (2.12) 

Therefore, in order for the surface E to render the functional I a strong minimum, 

it is necessary fo satisfy the stationarity condition and the Weierstrass inequality (2.12) 

at any of its points, where u is the set of any admissible controls, and u is a set of con- 

trols rendering the functional 1 a minimum, where u # JJ. 

3. Contttuctlon of optimal lordingr for continuous Lagrrngr 

multipllerr. Let us consider some examples of applying the necessary Weierstrass 

condition described above, starting with problems in which there are no discontinuities 

in the Lagrange multipliers A (5, y). 
As the first illustration, let us construct the loading I+ (2, Y) constrained by the in- 

equality (1.2) for a rod, described by (1.1). (1.3) and (1.4) and rendering the functional 

a maximum I 

I=? s 2 (T, y) sin 7 2ny dy 
0 

(3.1) 

In solving the problem, we introduce the relationship (1.6) in place of the inequality 
(1.2). and use the equations and conditions described in [I]. We then have the follow- 
ing equations for the factors A and p : 

h xx - w%,, = 0, --h - 2pu1 = 0, -2pu* = 0 (3.2) 

with the initial and boundary conditions 
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h (T, y) = 0, A, (T, y) = 2nw / 2 sin 2ny / I 
li (r, 0) = h (5, 2) = 0 

Hence the multiplier A is [3] 

h(z, Y) = -sin 2nm(y-z) sin? 

and therefore u1 = &F everywhere, except on lines on which h = 0 . These lines 

are defined by the equalities 

Y*=& (k = 1, 2,. . .)> x* = T + 2 (n = I,?,...) (3.3) - 

where the sign of the control t$ (5, Y) is found by using the inequality 

hu, - MJ, < 0 (3.4) 

obtained from the Weierstrass inequality. 

Shown in Fig. 2 is a distribution of the 

optimal load U, (5. y) = -j-F in the domain 
Q when lf2w( T ( 1 / w. The notation 
x+ = T - 11 2w and y l = I/ w is used. 

_ 
T E 

The functional I has the following value: 

Fig. A 

Now, let us examine the problem described above by replacing the functional by the 

following : 
I=?! .z(T,Y)(sin~+2sin~)dY (3.5) 

Repeating the appropriate computations, we obtain an expression for the multiplier 

h(s, Y) = -sin 2nru(y-z) sinT_+sin 4nw(r-s) sifi4F 

The switching lines for the control z+ are given by (3.3) and the relations 

** = 
1 

1 J2narccos X, Y&l12 
Y I / 2n (2n - arccos X), Y >1/2 

X _ 
[ 

_ 2 cos 2J-fw (T1- . ..)I -1 

Hence, the domain Q is now subdivided into the eight subdomains shown in Fig. 2. The 

sign of ~I(z, Y) is found by using the inequality (3.4). Therefore, four subdomains of 
constant z+ are obtained for the functional (3.1) and there will be eight such subdomains 

for the functional (3.5). 

4. Optimal loading lrwc for dltcontlnultlec in the Lagrange 
multlpllerr. Let us consider the optimization problem for (1.1) and (1.6), condi- 
tions (1.3) and (1.4). and the functional 

1 

I=jz.(T.y)(l+&aF) dY 

0 

(4.1) 

The equations for h and /A retain their form (3.2), and the boundary and final conditions 
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are written as 
?b ix, 0) = 1 (5, I) .-*: 0 

h(T, y) = -i - tz sin 3ty/1, h, (T, ZJ) = 0 

These conditions show that the multiplier h (5, y) has a discontinuitv at the points 
x=T,yLx_O ands= T,y-1 . 

We seek the solution of the first equation 
in (3.2) in the form 

h-h’fh” r&2) 

and require compliance with the conditions 

h’(II‘, y) ‘Y - l,h”(T,y) rt -esinny:1 

Fig. 3 
We shall keep the boundary conditions as 

before and consider that 11 ZW< 7’< 1 i w. 

The solution for A” is 
h” (2, $1 z - e cos “’ (“I- ” sin 4 (LS) 

1r-r order to find the discontinuous solution h’ (r, y): let us draw a characteristic y = 

l- w(T - x) through the point x = 7’. y = I and a characteristic y ‘C I&,? 

fT - X) through the point x = T, y L= () . 

The factor h’ is continuous in the elementary domains being formed (see Fig, 3). The 
equation defining the d~scontinui~ h’ on the characteristics has the simple form 

IL’], -.= 0. Solving it for each of the four segments of the characteristics, we obtain 

The condition [l] 
3L1) - A,’ .+ )&; _ A,’ ‘.t3 (I 

at the point X = X*, y = 112 , which results in the values f)I -= should be satisfied 
Da = 1. We then have for X 

a’ (xv 3) = I 0, 5, y E Qe 

0, 5, y E b.h 
(4.4) 

i 1, XT YEW3 

After substituting (4.3) and (4.4) into (4,2), we find that there is just one line az yz= 
x*zT- l/21 f w of di s co ntinuity of the control parameter uE (2, y) for E ‘> 0 . 

In this case, we have on the basis of the Weierstrass inequality 

In this case the functional 1 has the following value: 

(i 5) 

Upon compliance with the inequality -1 < e < 0, there are in addition to the line 
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already noted, two lines of discontinuity of the parameter ur (5, &) , the characteristics 

C, and CP All these lines and the distribution of the values or t&r (x, ZJ) are shown in 

Fig. 3. For this ur (CC, y) distribution, the functional f has the value 

I=,,=+, ““;‘:“) + ‘g (F - 2 + sin? + +ain2F) (4.6) 

Comparing expessions (4.5) and (4.6). we find that 1, = 1s for e = 0. For e = 0 

the continuous part of h” (g, #) vanishes, and therefore, h (5, y) = 0 in the domains 
0s and 04. In the case under consideration there is an i~umerable set of solutions yield- 

ing the extremum of the functional 1 for e= 0 . Two have been obtained above arti- 

ficially. 
Now, let us examine a functional of the form 

I =-.,z(T,$) +~~~T,~~~~ (4.7) 
F 

while keeping unchanged all the remaining equations and conditions of the problem l 

t 

Fig. 4 Fig. 5 

We draw two characteristics C, and Cs through the point x = T, y = 2 / 2 (Fig. 4). 

Then in addition to the boundary conditions k (2, 0) 5 h (5, 2) = 0 conditions of 

thp form fl] 

Al (TV Y) = 0 for y E 0 [ .+ as(T,y)=O for YE(&J] 

h (T, +> = 2 V- U&2) Q2 (T, 1,2)Ol 

h,, (T, Y) = 1 for y E IO, &?), hex (T, 9) = 1 for y E (J /2, 0 

must be satisfied. Separating the Lagrange multiplier h (5, Y) in the sum (4.2) into 
continuous and discontinuous parts, we obtain that the continuous part can be represented 

graphically (Fig. 5). where h” (s*, Z/2) = - T + .z*. The discontinuous part has the 
simple form 

h’($.,$&) _j~O~‘w, ;,y=;_, 
t 

If. a is a small quantity for which the inequality ‘Veal I w < “1 I w - T is satisfied. 
then the lines of discontinuity are disposed as is shown in Fig. 6. Hence I (2, y) > 0 
for x, Y EE 04, 05, We and h (5, y) < 0 in the remaining domain. The Weierstrass 
inequality yields 
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The functional equals 

F for z, YE Q-a,-a,- os 

F for =, Y Eo4 + OS+OS 

If a = 0, we then arrive at the problem of cumulative disturbances and for 

T = X,,. + ;, Xk E [o, t-j (k = 0, 1, . . .) 

we obtain 
3101ZkS 2uPzrs 

‘=E(kS7-- Ir 1 
Let us consider the functional 

while keeping the equation and condition of the problem unchanged. Then the equations 

defining the multipliers A and p are written in the form (3.2) and the conditions of the 

boundary of the domain 52 have the form 

h (5, 0) = 3t (x, 2) = 0, Lx (T, y) 7 0 

I 

- a sin ny / 1, YE[O, Z/2-E) 

h (T, y) = - 1 /e-a sin nyll, ?/~(1/2 -e, L/Z -+ e) 

-a sin ny/ 1, y.5 U/2 t e, 11 

Again there are discontinuities in the function A on the boundary. Let us draw two 

characteristics through the discontinuous points as is shown in Fig. 7. We seek the mul- 

tiplier X (x, y) as the sum (4.2) of continuous and discontinuous parts. We then obtain 

these two parts in the following form : 
1 -V4e-l, I, yEo2, o1 

I 0, in the remaining domain 

An investigation of the sign of the multiplier ?L (x, y) -- h’ (x, y) + h”(x, y) for 

Fig. 6 Fig. 7 
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a > 0 and the use of the Weientrass inequality show that the discontinuity in the func- 
tion u1 (2, y) holds only #or z = z* in this case, and this function has the form 

%(X9 ?I) = 
I 

F, x>x* 

-F, x<x* 

In case e < wx* the functional I equals the following: 

I= =(2-siny)+FT-g 

Upon compliance with the inequality -1/g e-l < a < 0 the distribution of the values 

of the function ui (5, y) is as shown in Fig. 7. The functional 1 hence has the value 

Comparing (4.9) and (4.10) for a = 0, we obtain the following: 1 = FT - Fe / w. 
Let US note that again the problem has an innumerable set of solutions for a = 0 , two 
of which are described above. 
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The problem of pressing a stamp on a half-plane with holes in which inclu- 

sions from another material are inserted with prestress, is considered. The 
cases of frictionless contact and for total adhesion of the stamp to the half- 

plane are examined. It is shown that when the elastic constants of the half- 

plane and inclusions are identical, the auxiliary functions introduced on the 

contours.are defined completely by the magnitude of the prestress and the 
solution of the problem is obtained in closed form. If the elastic constants 
are distinct, then the method proposed results in some functional relationships 
which can be used to determine the auxiliary functions from the kinematic 
contact conditions. 

1. Formulation of the problem. Let us consider an elastic half-plane 8, 
with a finite number of holes. The half-plane is bounded by a line L,, and the holes 


